TRANSFORMERS MAGAZINE'S

INDUSTRY NAVIGATOR

ဓ

INVESTMENTS, ARTIFICIAL INTELLIGENCE AND SUSTAINABILITY CONFERENCE 2024

Transformer oils innovation journey: From uninhibited to high grade circular modern oils

Pedro del Amo – OEM Manager, Shell Lubricants

Madrid - 11/6/2024

Agenda

Introduction and market trends

Overview of international specifications

Development towards modern, high-grade transformer oils

Summary

Q&A

Pedro del Amo Alonso

Shell Lubricants (Projects & Technology)

OEM Manager EMEA

- ✓ Since 2016 at Shell with focus on the Power sector
- ✓ IEC / TC 10, Committee transformer oil norms, CIGRE member
- ✓ Contact details:

Email: <u>p.delamoalonso@shell.com</u> Phone: +34 685 450 238

ĝ

Introduction: Energy transition and market trends

The world needs more and cleaner energy

As the global population increases and incomes rise, the demand for energy will grow

	9.7 bn	68	%		47%		0%	
By 2050	Global population to increase from 8 bn to 9.7 bn ¹	68% of peo in cit	68% of people will live in cities ²		Energy demand +47% ³		Target - Reducing Net Zero CO ₂ Emissions	
	¹ UN: The World Population Prospects: The 2022 Revisio	n, ² UN: World Urbanization Prosp	pects, the 2018 revision ³ US Ene	ergy Informa	ation Administration, Energy Outlook	2022		

Energy transition campus - Amsterdam

Global set up of Technology and Innovation Centres

Continuous Innovation projects @ SHELL Technology Centres

R&D journey to build new generation base oils for high performance transformer oils, lubricants and E-fluids

Innovation projects @ SHELL Holland Hydrogen 1 project

Shell, together with contractors and vendors, is building the first
big renewable hydrogen plant of Europe, 200 MW.
Once operational in the second half of this decade, it will produce
up to 60 tons of hydrogen per day, powered by offshore wind from
the North Sea.

KICK-STARTING THE HYDROGEN ECONOMY OF THE NETHERLANDS

Shell Holland Hydrogen 1

Shell Technology Centre Hamburg

Shell Technology Centre Germany

Opened in 1956

Technology Centre for Customer Solutions, Lubricants, Grease and Fuels development and E-fluids / <u>Transformer Oils</u>

PARTNERSHIPS: Shell continues investing in participation with Industrial bodies, cooperation with leading OEMs, technical universities, laboratories and customers

- ✓ 80 years in transformer oil production
- ✓ Partnership with leading OEMs
- ✓ Customers, grid companies

Continuous Innovation journey

- Collaboration with Technical Universities & Institutes
 University of Manchester / Exeter (UK)
 University of Lodz (Poland)
 SINTEF Institute (Norway)
- Participation: industry bodies (IEC, ASTM, IEEE, CIGRE)
- ✓ More to follow on Recycled oils & Ester technology

Biodegradable fluids offshore marine construction

 Reducing the environmental impact of critical operations does not mean a compromise on productivity or protection.

- BIODEGRADABILITY is a measure of the BREAKDOWN of OILS or chemicals by MICRO-ORGANISMS
- Biodegradability test OECD 301 B:
 - ✓ end of the test lasting 28 days
 - ✓ a substance has degraded by > 60%
- fluid is classified as readily biodegradable

Using Nature-Based Solutions certificates, we will compensate CO, emissions from the entire product lifecycle of selected wind lubricant products. To further help you reach your net-zero targets, we also offer our Nature-Based Solutions portfolio as a service. This means you can offset CO, emissions from your value chains, products, and services that are unrelated to Shell. [MIDEL]

Overview international specifications: Developments towards modern, high-grade transformer oils

55 Years of IEC transformer oils specifications, 5

Overview of transformer oils (2 main categories)

• Hydro-Carbon based

	Crude oil feed-stock	Un-inhibited		
IEC 60296	mix naphthenic/ paraffinic / aromatics,	Trace inhibited (max. 0,008%)		
Virgin oil, or	contains some sulphur	Inhibited (max. 0,4% inhibitor)		
recycled oil	Modified Hydro-carbons	Inhibited (Type A, High Grade)		
	GTL (Gas to Liquid) iso-paraffin)	e.g., Shell Diala S4 and Diala S5		
ESTER based				
IEC 61099	Synthetic Ester	Trend towards		
IEC 62770	crude oil and bio feedstocks	Inhibited inhibited oils		
Eiro registrant, and readily				
Fire resistant, and reading	Natural Ester	v v v v v v v v v v v v v v v v v v v		
bioaegradable	soya/rapeseed/etc. feed stock	Inhibited (max. 5% Inhibitor)		

Sec. 1.

Leading international oil specifications

IEC 60296 Ed5 (2020)

This IEC specification is fully open to supply mineral oils, like:

- ✓ Naphthenic based,
- Paraffinic based
- ✓ Modified / hydrocarbons
- ✓ or Recycled oils

ASTM D3487 (2016) Historically, mineral insulating oils prevailed over Naphthenic crude, however paraffinic crudes and new refining technology may be used as well

Standard Specification for Mineral Insulating Oil Used in Electrical Apparatus¹

This standard is issued under the fixed designation D3487; the number immediately fi original adoption or, in the case of revision, the year of last revision. A number in pares superscript epsilon (n) indicates an editorial change since the last revision or reapprova This standard has been approved for use by agencies of the U.S. Department of Defense. z1 NOTE-In X1.1, for Thermal conductivity, W/ was added before (m-°C) editorially in December 2

Open Cup Teste

al Insulating Liquids

Indicator Titration

latine Liquids

Water by the Rine Method

1. Scope

1.1 This specification covers unused mineral insulating oil of petroleum origin for use as an insulating and cooling medium in new and existing power and distribution electrical apparatus, such as transformers, regulators, reactors, circuit breakers, switchgear, and attendant equipment. 1.2 This specification is intended to define a mineral insu

lating oil that is functionally interchangeable and miscible with existing oils, is compatible with existing apparatus and with appropriate field maintenance,² and will satisfactorily maintain its functional characteristics in its application in electrical equipment. This specification applies only to new insulating oil as received prior to any processing

1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard

1.4 This international standard was developed in accordance with internationally recognized principles on standard-ization established in the Decision on Principles for the Development of International Standards, Guides and Recomnendations issued by the World Trade Organization Technical **Rarriers to Trade (TRT) Committee**

2. Referenced Documents

2.1 ASTM Standards

2.00

¹ This specification is under the jurisdiction of ASTM Committee D27 on Electrical Insulating Liquids and Gasesand is the direct responsibility of Subcom-mittee D27.01 on Mineral. Current edition approved June 15, 2016. Published July 2016. Original

approved in 1976. Last previous edition approved in 2009 as D3487-09. DOI:10.1520/D3487-16E01. DOI:10.1530/D347-14600. "#fetr to be institute of liketivat and Electronic Engineers, Inc. (IEE) C:57.106, Colaic for Acceptance and Maintenance of Instatuling Oil in Eliquinemst. Available from Elist Dopentison: Centre, 445 Hest Lan, Poetawa NJ, 8085-4441, USA. "For referenced ASTM standards, visit the ASTM website, www.astm.org, or oxidad ASTM Chalomer Service at arxives/astm.org, For Adnual Book of ASTM Standard volume information, refer to instandard Toocument Simmary page on Standard volume information, refer to instandard Toocument Simmary page on Standard volume information, refer to instandard Toocument Simmary page on Heat Astm.org, Standards, Volume Simmary Page on H

Copyright @ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohooken, PA 19425-2550. United States Copyright by ASTM Infl (all rights reserved); Tue Oct 13 07:20:54 EDT 2020

D92 Test Method for Flash and Fire Points by Cleveland

D97 Test Method for Pour Point of Petroleum Products

D445 Test Method for Kinematic Viscosity of Tran

D117 Guide for Sampling, Test Methods, and Specification for Electrical Insulating Oils of Petroleum Origin

and Opaque Liquids (and Calculation of Dynamic Viscos

D611 Test Methods for Aniline Point and Mixed Aniline

D923 Practices for Sampling Electrical Insulating Liquids D924 Test Method for Dissipation Factor (or Power Factor

D971 Test Method for Interfacial Tension of Oil Against

D974 Test Method for Acid and Base Number by Color

D1275 Test Method for Corrosive Sulfur in Electrical Insu

D1298 Test Method for Density, Relative Density, or API

Gravity of Crude Petroleum and Liquid Petroleum Prod-ucts by Hydrometer Method

Point of Petroleum Products and Hydrocarbon Solvents

and Relative Permittivity (Dielectric Constant) of Electri

IEC 60296 Edition 5 (2020)

General specifications, Type A (fully inhibited high grade oils)

1. Function

- Viscosity, Pour point, Breakdown voltage, DDF
- 2. Refining / stability
 - Acidity, IFT, DBDS, Sulphur content, Potential Corrosive Sulphur
 - Stray Gassing

3. Performance

- Oxidation Stability
- 4. Health, safety and environment (HSE)
 - PCA, PCB, Flash Point

Table 3 - General specifications, Type A (fully inhibited high grade oils)

		Limits			
Property	Test method	Transformer oil	Low temperature switchgear oils		
1 – Function					
Viscosity at 40 °C	ISO 3104 ^a or ASTM D7042	Max. 12 mm ² /s	Max. 3,5 mm ² /s		
Viscosity at -30 °C b	ISO 3104* or ASTM D7042	Max. 1 800 mm ² /s	-		
Viscosity at -40 °C °	IEC 61868	-	Max. 400 mm ² /s		
Pour point	ISO 3016	Max40 °C	Max60 °C		
Water content	IEC 60814	Max. 30 mg/kg ^d / 40 mg/kg ^e			
Breakdown voltage	IEC 60156	Min. 30 k	V / 70 kV f		
Density at 20 °C	ISO 12185 ^a or ISO 3675 or ASTM D7042	Max. 895 kg/m ³			
DDF at 90 °C	IEC 60247 ^a or IEC 61620	Max. 0,005			
2 – Refining/stability					
Colour	ISO 2049	L0,5 (les	s than 0,5)		
Appearance	-	Clear, free from sedime	nt and suspended matter		
Acidity	IEC 62021-2* or 62021-1	Max. 0,01	mg KOH/g		
Interfacial tension	IEC 62961 ^a or ASTM D971	Min. 43 mN/m			
Total sulphur content	ISO 14596 ^a or ISO 8754	Max. 0,05 %			
Corrosive sulphur	DIN 51353	Not corrosive			
Potentially corrosive sulphur	IEC 62535	Not corrosive			
DBDS	IEC 62697-1	Not detectable (< 5 mg/kg)			
labilities of IEC 80888		(1) Inhibited oil: 0,08 % to 0,40 %			
Inhibitors of IEC 00000	IEC 00000	(see 3.7)			
Metal passivator additives of IEC 60666	IEC 60666	Not detectable (< 5 mg/kg), or as agreed upon w the purchaser			
Other additives		See ^g			
2-furfural and related compounds content	IEC 61198	Not detectable (< 0,05 mg/kg) for each indiv compound			
Stray gassing under thermo-oxidative stress	Procedure in Clause A.4 (oil saturated with air) in the presence of copper	Non stray gassing: < 50 µl/l of hydrogen (H ₂) and < 50 µl/l methane CH ₄) and < 50 µl/l ethane (C ₂ H ₆)			
3 – Performance					
Oxidation stability	IEC 61125: Test duration	For oils with other antioxidant additives and m passivator additives, see 6.12.2			
– Total acidity ^h	4.8.4 of IEC 81125-2019	Max 0.2 mg KOH/c			
- Sludge h	4.9.1 of IEC 81125-2019	Max. 0,5 mg KOH/g			
	4.8.5 of IEC 81125-2010	Max. 0.050			
- DDF at 90 °C ° 4.8.5 of IEC 01120/2018 Max. 0,050					
Flash point	ISO 2719	Min. 135 °C	Min. 100 °C		
PCA content ^j	IP 346	<	3 %		
PCB content	PCB content IEC 81819		Not detectable (< 2 mg/kg)		
POB content IEC 0101a					

Health, safety and environment (HSE)

O Flash Point ≥ 135°C (PMCC)	Safety
o PCA content<3%	Protection of nature / life
• Environment / Toxicity	Protection of nature / life
• Biodegradability	Recyclability
	Sustainability
Information on MSDS	

Functional

• Viscosity

- at 40°C (standard reference temperature for industrial applications)
- at 30°C (Low temperature behaviour)
- Pour Point
 - minimum 40°C (in relation to Lowest Cold Start Energizing Temperature)

≥ 30 kV

- Breakdown voltage (at 2½ mm gap)
 - Untreated
 - Treated (filtering, vacuum/de-watering) ≥ 70 kV
- DDF / Tan Delta / Power Factor
- Water content
- Density

Region ambient temperatures versus arctic conditions

Electrical behaviour

Contamination

9

Refining stability

9

Performance: Oxidation stability

Oxidation stability

Two performer levels

- Type A: High Grade
- Type B: Standard Grade

Laboratory tests have been developed to evaluate the oxidation stability for different oils

Assessment of:

- Acidity
- Sludge
- DDF

Performance: Oxidation stability: trend low sludge & acidity

DOBLE TOPS survey information on inhibited oils available on the market

ĝ

Trend towards higher oxidation stability & high-grade oils

ASTM D 3487 oil specification			Additional specifications on Oxidation resistance			
Type I Ty normal oxidation resistant greater oxid		pe ll ation resistant	DOBLE Type II oxidation resistant		Grid Company (EU) Better oxidation resistant	
Less stringed limits	RPVOT ≥ 195		RPVOT ≥ 220		RPVOT ≥ 350	
Shell Diala S4 family				Shell Diala S5 BD		
Shell Diala S4 ZX-I		Shell Diala S4 ZX-IG (ASTM)		High Grade (IEC 60296 Type A)		
High Grade (IEC 60296 RPVOT ≈ 700	Type A)	ASTM 3487 Type II (Inhibited) RPVOT ≈ 700		ASTM 3487 Type II (Inhibited) RPVOT ≈ 700		
				R	eadily Biodegradable	

Extended Oil Life versus mid-life oil reconditioning

Enhanced heat transfer performance More demanding operating conditions: more frequent HIGHER OIL TEMPERATURES and ACCELERATION OIL OXIDATION

High grade oils

Longer life protection assets

Longer transformer lifetime extend oil life via RECONDITIONING or RETROFILLING at extra costs

Scenarios:

A. Old days, standard load & standard mineral oil

B. More demanding operating conditions

C. Mid-life oil reconditioning

D. High performance design, extend life

Selative oil life →

Despite these evolving challenges, transformer **RELIABILITY**, **EFFICIENCY** and **PROTECTION** are still table stakes for operators to ensure performance and to **REDUCE** the **TOTAL COST OF OWNERSHIP**.

Global supply chain: Building a Global Network

Buenos Aires

Summary and conclusions

- Energy transition drives increasing equipment loads & life extension
- Specifications and norms are updated to meet emerging requirements
- Trends towards inhibited High-Grade oils, with higher oxidation stability
- Shell invests in continuous innovation and product development
- Shell Diala, GTL base oils, deliver premium oxidation stability, are non-stray gassing and easy to recycle
- Robust field experiences and major OEM approvals and usage
 - Shell extends its global supply chain portfolio for transformer oils

Ø

Thank you very much for your attention!

Q&A