

INVESTMENTS, ARTIFICIAL INTELLIGENCE AND SUSTAINABILITY

CONFERENCE 2024

Contents

Short Introduction of Amorphous alloy

What is amorphous alloy?

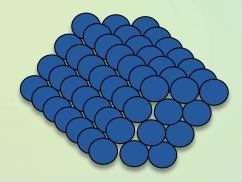
What is the advantage of amorphous alloy in the manufacturing process?

What are the differences between amorphous and traditional materials?

Why is Amorphous technology important in energy saving?

What are the components of losses in a transformer?

Why is it important to reduce no-load losses?


What is the advantage of using amorphous materials in transformers?

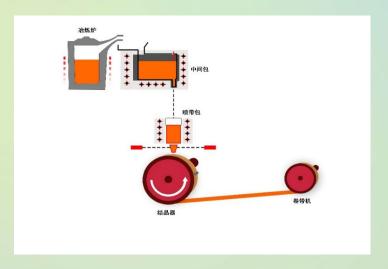
Clarification and the future of amorphous alloy

What are the common misconceptions about amorphous transformers? The answer to world carbon neutralization trend

What is amorphous alloy?

Conventional metallic materials exhibit a crystalline structure when in solid state.

Amorphous alloy metals exhibit a non-crystalline structure when in solid state. This micro structure is very much like that of liquid metal or glass.


Because of the different microstructure, amorphous alloy has excellent soft magnetic properties: low coercivity, high permeability, high electrical resistance.

These properties make iron based amorphous alloy ribbon an ideal material for distribution transformer cores.

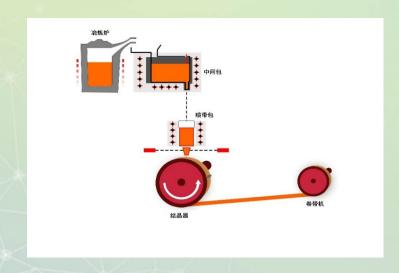
Advantage of Amorphous alloy: Environmentally friendly Manufacturing

Amorphous ribbon production process

~10m

Molten steel is rapidly cooled at a rate of 1,000,000°C/s, the thickness of ribbon is only 0.03mm

Silicon steel production process


~1000m

The CO₂ emission per ton of amorphous ribbon production is 730kg less than that of silicon steel

Advantage of Amorphous alloy: Environmentally friendly Manufacturing

Molten steel is rapidly cooled at a rate of 1,000,000°C/s, the thickness of ribbon is only 0.03mm

CERTIFICATE OF PRODUCT CARBON FOOTPRINT Shows that Amorphous alloy's:

Product Carbon Footprint Data Per Functional Unit

3.10 kgCO2e

The carbon footprint of silicon steel is about 3.8kg CO₂/kg, which is much higher than the carbon footprint data of amorphous ribbon.

材料	符 号	碳排放因子默认值/(kgCO ₂ e/kg)
硅钢片	$\mathrm{EF}_{\mathrm{Fe}}$	3.8
非晶合金	$\mathrm{EF}_{\mathrm{Aa}}$	3.07

国家认证认可监督管理委员会

Certification and Accreditaion Administration of the P. R.C.

CERTIFICATE OF PRODUCT CARBON FOOTPRINT

CERTIFICATE NO.: PCF-2023-CL-0114

Valid from: 3rd August, 2023 Valid until: 2nd August, 2025

CQC issues a certificate according to related verification procedures to confirm the authenticity and validity of the following contents:

Name/Specification

Fe-based amorphous alloy ribbon

Applicant/Address

Qingdao Yunlu Advanced Materials Technology Co., Ltd. No 7, Xinyuan East Road, Lancun Town, Jimo City, Qingdao City,

Shandong Province, P.R. China.

Manufacturer/Address

Qingdao Yunlu Advanced Materials Technology Co., Ltd. No 7, Xinyuan East Road, Lancun Town, Jimo City, Qingdao City,

Shandong Province, P.R. China.

Factory/Address

Qingdao Yunlu Advanced Materials Technology Co., Ltd. No 7, Xinyuan East Road, Lancun Town, Jimo City, Qingdao City,

Shandong Province, P.R. China

Data Collection Period

2022.01.01-2022.12.31

Functional Unit

1 kg Fe-based amorphous alloy ribbon

Product Carbon Footprint

3.10 kgCO,e Data Per Functional Unit

Standards and/or Rules

ISO14067 / PAS2050

Followed in Verification System Boundary

Cradle-to-Gate

Carbon Emission Proportion

in Each Stage

72,45%

27.55%

CHINA QUALITY CERTIFICATION CENTRE

http://www.cac.com.cn

Section 9, No. 188, Mansihuan Xilu, Beijing 100070 P. R. China

Advantage of Amorphous alloy: Environmentally friendly Manufacturing

② Crush
Use machine to grind the

scrap cores

3 Magnetic

Separate useless substances (epoxy) from amorphous bands

4 Flush and dry

Clean and dry the amorphous material

6 As amorphous raw material, remelting in the furnace

Remelting in furnace, making full use of production of amorphous ribbon again

S Packaging

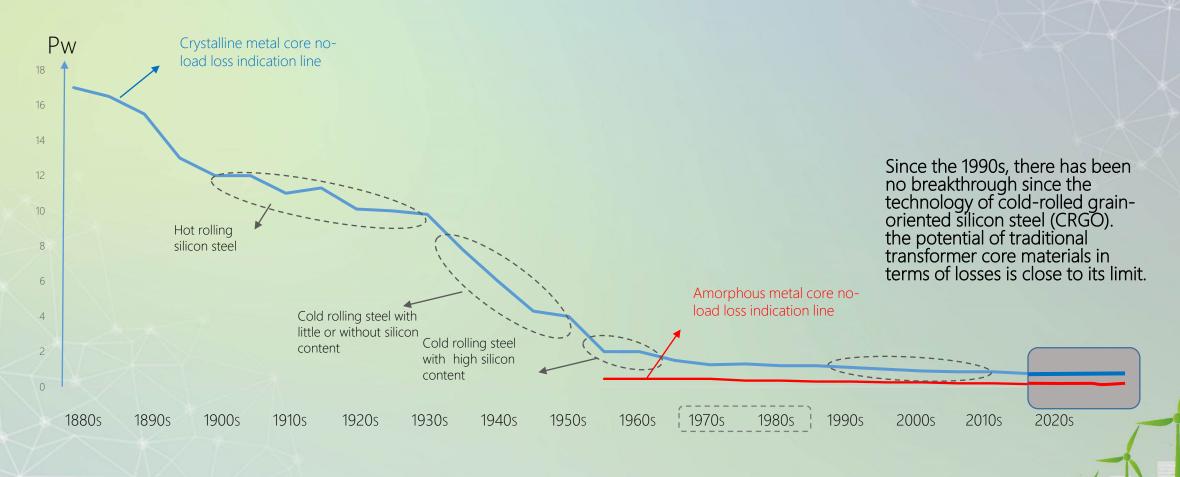
Pack the cleand amorphous ribbon

The uses of Amorphous alloy

Amorphous alloy is usually called metal glass or liquid metal, which is a new type of high-efficiency soft magnetic material.

Amorphous evans core

Amorphous wound core

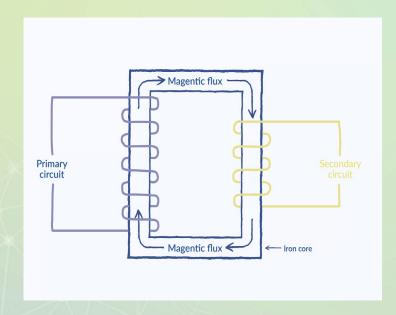


Amorphous 3D core

Amorphous core is the product of amorphous alloy and the core component of amorphous transformer. Compared with GOES (grain-oriented silicon steel) core transformers, its no-load loss can be reduced by 60%-80%.

The development history of transformer core material

Comparison of various properties between Amorphous alloy and CRGO


	Magnetic properties	CRGO23RK075	Amorphous alloy		
	Saturation magnetic density Bs (T)	1.9	1.63		
/	Coercivity Hc (A/m)	<30	<4.0		
	The maximum permeability µ	4×10 ⁴	25×10 ⁴		
7	Iron loss (W/kg)	P<0.75 W/kg @50Hz,1.4T	P<0.16W/kg @50Hz,1.4T		
	Magneto metric stretch coefficient	2*10 ⁻⁶	27*10 ⁻⁶		

Mechanical properties	CRGO23RK075	Amorphous alloy			
Lamination factor	0.95	0.88			
Resistivity (μΩ· cm)	45	130			
density (g/cm3)	7.65	7.27-7.30			
Curie temperature (°C)	746	415			
tensile strength (Mpa)	343	1645~1767			
thickness (µm)	50-500	20-30			
Vickers hardness (Hv)	181	984-1000			

Basic principle of energy loss in transformer

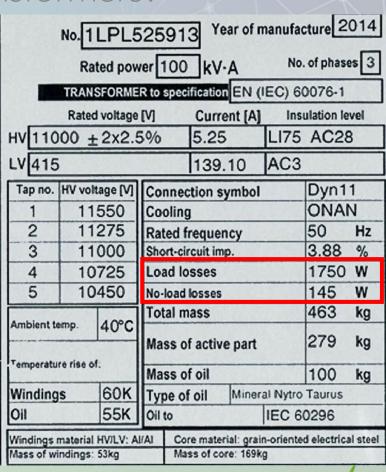
Schematic diagram of the transformer principle

The most important components of a transformer are the core and coils. Transformer losses represent energy losses during voltage conversion. the loss of transformer is mainly composed of two parts: no-load loss and load loss.

The no-load loss is determined by the core construction.

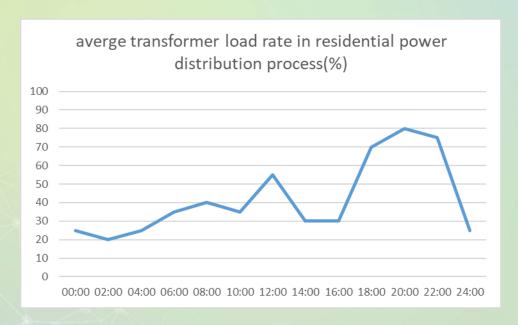
The load loss is determined by the coil construction.

At present, the core of the distribution transformer is usually made of CRGO (cold-rolled grain-oriented silicon steel). Compared to this material, amorphous has much lower no-load losses.

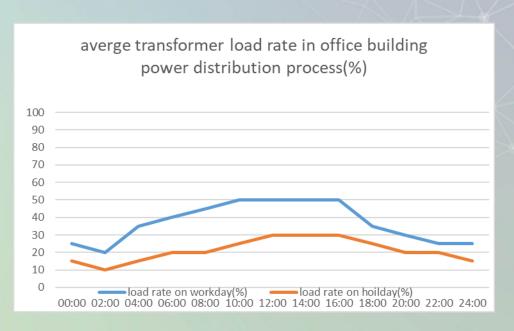

How to calculate actual losses in transformers?

The no-load losses in a transformer refer to the losses produced by the transformer when no one is drawing energy from the transformer. The load losses in the transformer are the additional losses generated when the transformer is fully loaded (maximum output power).

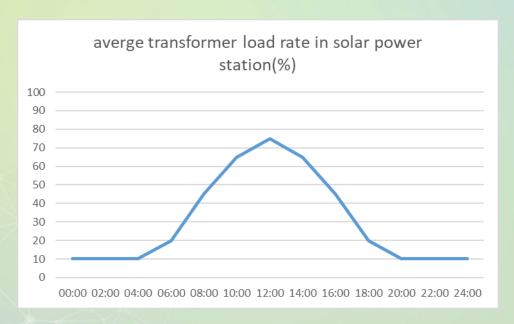
The total losses in transformer = no-load loss + load loss * the square of the load rate.

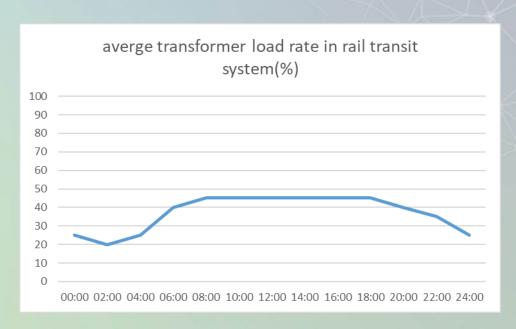

The total losses generated by the transformer during operation are closely related to the load rate.

Next, we will discuss the load rate of distribution transformers.



Why is it important to reduce no-load losses?


In the **residential power distribution process**, the peak load and valley load of the transformer are quite different. Especially with the popularization of electric vehicles, the load rate of residential distribution transformers usually reaches close to 80% from 18:00 to 22:00 and will be lower during other time periods.


In the office building power distribution process, the load rate is higher (close to 50%) on working time (8:00AM to 6:00PM), but lower in other time. On weekends or holidays, it would be lower than 30% for the whole day.

Why is it important to reduce no-load losses?

In **solar power stations**, transformers will only have an effective load during the day (6:00 to 18:00), and the load rate will reach the peak at 12:00 noon, usually 75%-80%. If the different seasons and weather are taken into consideration, the average load rate is even lower.

In the field of **rail transit**, the load rate of the transformers will be below 50%. Compared with other occasions, the change is not drastic. This is because rail transit usually requires higher equipment reliability and will install extra transformers as redundancy.

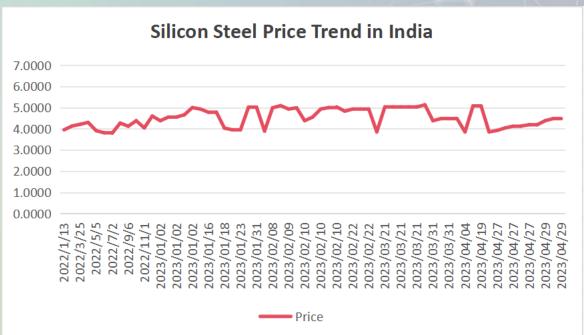
Material	CRGO (23RK075)	Amorphous AYFA-N
Average FOB price in the first quarter of 2024 (EUR/kg)	4.5	2.6

The price of CRGO will rise in the short term this year and remain stable. According to predictions, the market price will be around 4.5 EUR/kg.

Amorphous alloy prices have been in a stable range last year and will not change much this year too.

The manufacturing cost of amorphous transformers is higher than that of silicon steel transformers. But the electrical energy saved during its operation far exceeds its excess manufacturing cost. Calculated using average electricity prices in Europe (0.32 EUR/kWh), Life span of transformer is assumed 30 years:


Transformer type	CRGO	Amorphous alloy			
Capacity	100 kVA	100 kVA			
No-load losses	130 W	50 W			
Load losses	1750 W	1750 W			
Total losses (40% load rate)	410 W	330 W			
Saved power (yearly)	691.	2 kWh			
Saved electricity price (yearly)	221.18 EUR				
Saved electricity price (life span) 6635.4 EUR					


Under the same load loss, the manufacturing cost of a 100kVA amorphous transformer is usually no more than 15% (about €400) higher than that of a silicon steel transformer.

Recycling cycle: 2-5 years (depends on electricity price)

When silicon steel price increases, the market which does not have amorphous core as a complementary commodity in the country (Pakistan) will face a more substantial price increase, for transformer manufacturers and power utilities, the supply chain system will be facing a greater impact.

Misconception

Amorphous transformers have lager size, and the cost of amorphous transformers are higher.

Fact

The cost and volume of amorphous transformers versus CRGO transformers <u>depends on the designing energy</u> <u>conversion efficiency</u>.

It has been proven that amorphous transformers have a cost advantage when energy efficiency requirements are higher. Compared with the low-magnetic density design of the CRGO transformer, its size and weight are almost the same.

The design magnetic density of amorphous transformers is usually 1.4T, and the design magnetic density of CRGO transformers is usually 1.7T. A higher design magnetic density will increase the no-load loss, so when energy efficiency requirements are high, CRGO transformers need to increase the design magnetic density. reduced to meet energy efficiency requirements.

Lower design magnetic density will increase the size of the transformer. Therefore, when the design magnetic density is reduced, the difference in volume between CRGO transformers and amorphous transformers will be reduced.

Misconception

Amorphous transformers cannot be repaired, and as operating time increases, the transformers become unstable.

Fact

Amorphous transformers can be repaired. Well-designed amorphous transformers have good stability and life cycle.

When repairing amorphous transformers, the core is usually replaced rather than reused. The core of amorphous transformers can be directly recycled as raw material for amorphous ribbon, but CRGO can not.

According to existing analysis reports, amorphous transformers still have good performance after 15 years of operation. There is no evidence that amorphous transformers will fail simply because of the amorphous material.

Table 1 Retesting of technical parameters of amorphous alloy distribution transformers after grid operation

		,	• '
Product No.	Capacity/kVA	Testing Time	No-Load loss/kVA
100706	F00	2010-07-06	190
100706	500	2018-9-26	194
100719	200	2010-07-18	120
100718		2015-07-02	117
100705	400	2010-07-05	170
100705	400	2019-03-25	173

Table 2 Retesting of technical parameters of amorphous alloy distribution transformers after grid operation

Droduct No	Conneity////	Tasting time	Operation time	No-load
Product No.	Capacity/kVA	Testing time	span	loss/W
000135 10	350	2006-02-20	15	127
060135-10	250	2021-08-18	15	136
070171 4	160	2007-02-11	1.4	80
070171-4	160	2021-08-18	14	85

Amorphous transformer core replacement

It can be seen from the data that the no-load loss value of amorphous transformers will not increase by more than 5% after long-term actual operation.

Misconception

Amorphous materials are only suitable for small capacity transformers

5500 kVA wind power step-up amorphous transformer

Fact

Amorphous transformers exceeding 1MVA are very common, and amorphous transformers can reach capacities exceeding 5MVA.

3300 kVA traction rectifier amorphous transformer

实验室名称: 苏州电器科学研究院股份有限公司

国家电器产品质量检验检测中心

Lab Name: Suzhou Electrical Apparatus Science Research Institute Co., Ltd. China National Center for Quality Inspection and Test of Electrical

Apparatus Products

№ 22U0104-S

型式试验报告 Type Test Report

委 托 单 位: 青岛云路先进材料技术股份有限公司

Client: Qingdao Yunlu Advanced Materials Technology Co., Ltd

产品名称: 非晶合金配电变压器

Name of Product: Amorphous alloy distribution transformer

产品型号: SBH25-M-5500/35-NX1 Product Type: SBH25-M-5500/35-NX1

检验类别:型式试验 Test Category: Type test

本实验室对出具的检验(试验)结果负责,未经实验室书面同意, 不得部分地复制本报告。

The laboratory is responsible for the inspection (Test) results. The report shall not be reproduced except in full, written approval of the laboratory.

,	Test Report	Suzhou Electrical Appar		№: 22U010	
		Research Institute (Co., Ltd.	Total 47 Pag	ge 04
Sum	mary of test results				
No Test item		Specified value	Measured Before	l value After	Conc-
No		Standard (commission requirement)	short-circuit test	short-circuit test	lusion
1	Measurement of d.c. insulation resistance between each winding to earth and between windings (routine test)	Providing value of insulation resistance $(G\Omega)$ Providing absorption ratio (R_{60}/R_{15})	See 4.1	See 4.18.4.1	1
2	Measurement of voltage ratio and check of phase displacement	Voltage ratio tolerance of principal tapping; obtaining the lower of the following values between ±0.5% of declared ratio and ±1/10 of the actual	-0.04%~ -0.01%	-0.04%~ -0.02%	PASS
	(routine test)	percentage impedance Connection symbol; Dyn11	Dyn11	Dyn11	
3	Measurement of winding resistance (routine test)	Maximum resistance unbalance rate Line resistance: ≤1%	HV (line): 0.28% LV (line): 0.68%	HV (line): 0.26% LV (line): 0.57%	PASS
4	Applied voltage test (routine test)	HV: 85kV 60s LV: 5kV 60s	85.0kV 60s 5.0kV 60s	85.0kV 60s 5.0kV 60s	PASS
5	Insulation test of auxiliary wiring (routine test)	Wiring for auxiliary power and control circuits: 2.0kV 60s	2.0kV 60s	2.0kV 60s	PASS
6	Induced voltage withstand test (routine test)	Applied voltage (kV): 2Ur Induced voltage (kV): 74 Duration (s): 120(f _n /f) Frequency (Hz): >50	1.38 74.0 30 200	1.38 74.0 30 200	PASS
7	Measurement of no-load loss and current (routine test)	I ₀ (%): 0.20 +0% P ₀ (kW): 1.200 +0%	0.11 1.1514	0.12 1.1884	PASS
8	Measurement of no-load loss and current at 90% and 110% of rated voltage (type test)	I ₀ (%): measured P ₀ (kW): measured	90% 110% 0.06 0.17 0.8274 1.6481		1
9	Measurement of short-circuit impedance and load loss (routine test)	t: 75°C Z(%): 7.0 ±10% P _k (kW): 30.000 +0% P _{total} (kW): 31.200 +0%	6.92 28.8368 29.9882	6.94 29.3378 30.5262	PASS

DOJC

SIJI-YB004

DQJC

Т	est Report	Suzhou Electrical Appar Research Institute (100000000000000000000000000000000000000	№: 22U0104-S Total 47 Page 05		
_		Specified value	Measur	red value		
No	Test item	Standard (commission requirement)	Before short-circuit test	After short-circuit test	Conclusio	
		Breakdown voltage(kV): ≥40 tanδ(90 °C): ≤1.0%	63.0 0.18%	59.7 0.21%		
	Insulating liquid test	Water content(mg/L): ≤20 Flash point(closed-cup)(°C): ≥170	8.6 174.0	1		
10	(routine test, special test, commission test)	Providing gas chromatograph analysis: Hydrogen: <30µL /L Acetylene: 0 Total hydrocarbon: <20µL /L	See 4.10	,	PASS	
11	Leak testing with pressure for liquid-immersed transformers (routine test)	Applied pressure(kPa): 50 Duration(h): 24 No oil leakage or damage	50.0 24 No oil leakage or damage		PASS	
12	Mechanical strength test of tank (type test)	Applied vacuum degreck(Pa); 50 Applied positive pressure(kPa):60 Test duration(min): Elastic deformation(mm): tank wall: <24 tank cover: <18 Permanent deformation(mm) tank wall: <10 tankcover: <8 No damage	See 4.12	PASS		
13	Temperature-rise test (including calculation of the winding hot-spot temperature-rise) (type test, commission test)	Top oil temperature-rise limit(K): 53 Winding temperature-rise limit(K): 60 Winding hot-spot temperature-rise limit(K): 78 Temperature-rise limit of tank surface and structural parts(K): 75	HV winding temp LV winding temp HV winding hot-s temperature-rise: LV winding hot-s temperature-rise: Temperature-rise	Iop oil temperature-rise; 50.1 HV winding temperature-rise; 56.2 JV winding temperature-rise; 55.1 HV winding hot-spot emperature-rise; 70.0 JV winding hot-spot emperature-rise; 68.8 Temperature-rise; 68.8 Temperature-rise of tank surface and structural parts; 53.7		
14	Short-duration overload capacity test (commission test)	Pressure protective device is not operated. Without leakage Tank enclosure(K): ≤85 Bushing(K): ≤85 Permissible transformation range of the radiator(mm): ≤3	Without operation Without leakage 61.2 50.4 See 4.14	Vithout operation Vithout leakage 11.2 0.4		
15	Determination of sound levels (type test)	Sound pressure level $\overline{L_{pA}}$ dB(A): Sound power level L_{WA} dB(A): \leq 70	are level \overline{L}_{pA} dB(A): 51			
16	Measurement of zero-sequence impedances on three-phase transformers (special test)	Providing zero-sequence impedance values (Ω)	0.0136	1		

The answer to the global carbon neutralization trend in USA

4th April. 2024, DOE (Department of energy, America) finalized new energy-efficiency standards for three categories of distribution transformers to improve the resiliency of America's power grid, lower utility bills, and significantly reduce domestic carbon-dioxide (CO₂) emissions. The new law will be officially implemented in 2029.

New energy efficiency standards for three categories of distribution transformers to improve the resiliency of America's power grid, lower utility bills, and significantly reduce domestic carbon-dioxide (CO_2) emissions.

U.S.: Amorphous Transformer adoption will increase from Less than 5% to at least 25% before 2029.

Source: <u>DOE Finalizes Energy Efficiency Standards for Distribution Transformers That Protect Domestic Supply Chains and Jobs, Strengthen Grid Reliability, and Deliver Billions in Energy Savings | Department of Energy</u>

ENERGY.GOV

CIENCE & INNOVATIO

ENERGY ECONO

SECU

SAVE ENERGY, SAVE MONEY

100

Department of Energy

DOE Finalizes Energy Efficiency
Standards for Distribution Transformers
That Protect Domestic Supply Chains and
Jobs, Strengthen Grid Reliability, and
Deliver Billions in Energy Savings

APRIL 4, 202

Energy.gov »

DOE Finalizes Energy Efficiency Standards for Distribution Transformers That Protect Domestic Supply Chains and Jobs.

Strengthen Grid Reliability, and Deliver Billions in Energy Savings.

Driven by Robust Engagement Process, Finalized Standards Will Strengthen Grid Resiliency, Preserve Unions
Jobs, Support Domestic Electric Steel Growth, and Enhance America's Economic and Manufacturing
Competitiveness

WASHINGTON, D.C. — The U.S. Department of Energy (DOE) today finalized Congressionallymandated energy efficiency standards for distribution transformers to increase the resiliency and
efficiency of America's power grid, support good-paying, high-quality manufacturing jobs, and
accelerate the deployment of affordable, reliable, and clean electricity around the nation. These
updated standards—which includes a longer compliance timeline of five years—will save American
utilities and commercial and industrial entities \$824 million per year in electricity costs, and
result in more demand for core materials like grain-oriented electrical steel (GOES). Following a
proposed rule issued last year, DOE adjusted these final standards based on extensive stakeholder
engagement to ensure continued growth opportunities for domestic steel production and provide a
longer compliance timeframe of five years.

"Today's actions reflect DOE's deep commitment to developing forward-looking solutions that align with President Biden's industrial policy goals, including creating good-paying jobs, strengthening domestic manufacturing, and helping American workers capture the economic benefits of our clean energy economy," said U.S. Secretary of Energy Jennifer M. Granholm. "The regulatory process can work, and this final rule shows just that by reflecting feedback from a broad spectrum of stakeholders. Ultimately, it will be a piece of the solution, rather than a barrier, to help resolve the ongoing distribution transformer shortage and keep America's businesses and workers competitive."

The answer to the global carbon neutralization trend in China

On December 22nd, 2020, MIIT, The State Administration for Market Regulation and the NEA jointly issued the "Transformer Energy Efficiency Improvement Plan (2021-2023)", which calls for increasing the promotion of high-efficiency and energy-saving transformers. From June 2021, new transformers must meet the requirements of national energy efficiency standards, and the use of energy-efficient transformers is encouraged.

Time being:

China state grid: Amorphous oil-immersed distribution transformer accounts for 58% tender volume;

China Southern power grid: Amorphous oil-immersed distribution transformer accounts for 53% tender volume.

Level 1		Le	vel 2	Level 3		
SST	AMT	SST	AMT	SST	AMT	

	1 级					2 级				3 级									
额定容量		电工钢带			非晶合金			电工钢带			非晶合金			电工钢带			非晶合金		短路
w kVA	空载 损耗	负载损 W	耗	空载 损耗	负载损 W	耗	空载 损耗	负载损 W	枆	空载 损耗	负载损 W	耗	空载 损耗	负载损 W	耗	空载 损耗	负载损 W	耗	阻抗 %
	W	Dyn11/Yzn11	Yyn0																
30	65	455	430	25	510	480	70	505	480	33	535	510	80	630	600	33	630	600	
50	80	655	625	35	735	700	90	730	695	43	780	745	100	910	870	43	910	870	
63	90	785	745	40	880	840	100	870	830	50	930	890	110	1 090	1 040	50	1 090	1 040	
80	105	945	900	50	1 060	1 010	115	1 050	1 000	60	1 120	1 070	130	1 310	1 250	60	1 310	1 250	
100	120	1 140	1 080	60	1 270	1 215	135	1 265	1 200	75	1 350	1 285	150	1 580	1 500	75	1 580	1 500	
125	135	1 360	1 295	70	1 530	1 450	150	1 510	1 440	85	1 615	1 540	170	1 890	1 800	85	1 890	1 800	4.0
160	160	1 665	1 585	80	1 870	1 780	180	1 850	1 760	100	1 975	1 880	200	2 310	2 200	100	2 310	2 200	4.
200	190	1 970	1 870	95	2 210	2 100	215	2 185	2 080	120	2 330	2 225	240	2 730	2 600	120	2 730	2 600	
250	230	2 300	2 195	110	2 590	2 470	260	2 560	2 440	140	2 735	2 610	290	3 200	3 050	140	3 200	3 050	
315	270	2 760	2 630	135	3 100	2 950	305	3 065	2 920	170	3 275	3 120	340	3 830	3 650	170	3 830	3 650	
400	330	3 250	3 095	160	3 660	3 480	370	3 615	3 440	200	3 865	3 675	410	4 520	4 300	200	4 520	4 300	

Source: https://openstd.samr.gov.cn/

The answer to the global carbon neutralization trend in Europe

Energy Efficient Distribution Transformer Policies set out by the MEPs for three-phase, liquid-filled and dry-type, medium powel transformers in Europe (EC, 2014). The first set of requirements took effect on 1 July 2015 and the second (more stringent) tier 2 took effect on 1 July 2021.

When will Tier 3 come?

24 kV	Tier 1 (from	1 July 2015)	Tier 2 (from	1 July 2021)
kVA	Maximum no- load losses (W)	Maximum load losses (W)	Maximum no- load losses (W)	Maximum load losses (W)
≤25	70	900	63	600
50	90	1,100	81	750
100	145	1,750	130	1,250
160	210	2,350	189	1,750
250	300	3,250	270	2,350
315	360	3,900	324	2,800
400	430	4,600	387	3,250
500	510	5,500	459	3,900
630	600	6,500	540	4,600
630	650	8,400	585	6,000
800	770	10,500	693	7,600
1,000	950	11,000	855	9,500
1,250	1,200	14,000	1,080	12,000
1,600	1,450	18,000	1,305	15,000
2,000	1,750	22,000	1,575	18,500
2,500	2,200	27,500	1,980	23,000

Our companys

Qingdao Yunlu Advanced Material Technology Co., Ltd

3 MAJOR PRODUCT LINES

The company's three major products are the latest soft magnetic materials known to mankind in the past 40 years

The world's foremost leader in Amorphous industry The world's largest amorphous material producer

Amorphous Ribbon: 130,000 Ton/Year

Amorphous core: 30,000 Ton/Year

Global market share: 60%

China domestic market share: 70%