

SUSTAINABILITY AND DIGITALIZATION

EDF Hydro's approach to sustainability and digitalization

Jean SANCHEZ, EDF Senior Transformer Engineer

7th June 2023

EDF Hydro GSU fleet

≈ 800 GSU power transformers on 450 hydro power plants

Some big units, many small... almost all uniques!

Up to 400 kV 370 MVA GIS included

Business units of operations & engineering

French EDF Hydro capacity (20 GW)

Global Sustainability View

More & more => approach to estimate global LifeCycle Assessment / Carbon Impact

Global Sustainability View

(a) GHG Emissions per kWh produced During Different LC Stages of Project A

Sum of Construction Operation & Total for Manufacturing & Installation Maintenance Life Cycle Example from literature to compare GHG impact between 2 hydro projects

Fig. 5. Life-cycle inventory of GHG emissions for Projects A and B

Source : Zhang, Qinfen & Karney, Bryan & Maclean, Heather & Feng, Jingchun. (2007). Life-Cycle Inventory of Energy Use and Greenhouse Gas Emissions for Two Hydropower Projects in China. Journal of Infrastructure Systems. 13. 271-279. 10.1061/(ASCE)1076-0342(2007)13:4(271).

Field case: New group of + 12 MW to existing plant

Site	Preparatory	Plant	River	Total
work	work	construction	adaptation	(t CO ₂ eq)
5 %	12 %	59 %	24 %	≈ 13 000

Plant construction has most impact... hydro work on the river is also significant!

+ Sensitivity analysis on main drivers:

	Base	Alternative	Gain (%)	Gain (t CO ₂ eq)
Transport of people on site by car	Gasoline	Electric	- 25	166
\approx 1 100 t of steel production	North America	France	- 69	665
% of recycled steel	0 %	100 %	- 72	1 803
Concrete resistance class	40 MPa	20 MPa	- 27	827

Source : Internal EDF

Carbon impact of electrical equipment

EDF first "homemade" estimations, with Simapro on big electrical equipment => mass and <u>CO₂ emission factors</u> from OEMs when available... => <u>hard to get significant ones! Still need to find the "right" emission factors...</u>

- Manufacturing impact here
- Main drivers

240 MW / 290 MVA new plant	Transformer		Generator		
	Mass (t)	(t CO ₂ eq)	Mass (t)	(t CO ₂ eq)	
Total	276	6 400	679	15 000	
Core (electrical steel)	127	4 100	250	5 400	
Tank / Frames+shaft (= steel)	50	1 700	340	8 100	
Windings (= copper)	28	190	50	290	

On carbon impact of transformers

=> Many interesting papers from Bhaba P. Das, Hitachi Energy, in Transformers

Source : Internal EDF

Example: Carbon impact of steel

Steel	(kg CO ₂ eq/kg)	
From primary source*	1.4 - 2.2	
From secondary source*	0.340	
Chili : 1 champion ©!: 100 % recycled + low carbon electricity @ 6.7 g CO ₂ /kWh!	0.286!	
France: 68 % recycled + electricity @ 69 g CO ₂ /kWh	0.415	
Korea: unknown % of recycled + electricity @ 514 g CO ₂ /kWh	2.820	
Significant main drivers of steel manufacturing > % of recycled materials!		

> Electricity g CO₂/kWh of manufacturing country

> Type of furnaces: Blast Furnace / Direct Reduced Iron (+++) + Basic Oxygen Furnace / Electric Arc Furnace (+++)

* Source : World steel

EDF Hydro – Global impact of projects

More & more carbon footprint assessments, up to LifeCycle Assessment on hydro projects. > Few cases, but demand / regulatory requirements are growing, internal WGs on it.

- > Most impact inputs:
 - Concrete (% and type of cement...) for civil engineering works
 - Steel/copper (type of furnace / part of recycled materials...)
 - Country of manufacturing and its electricity mix impact (g CO₂eq/kWh)
 - Losses of electrical equipment (generators, transformers...) (impact +++)
 - Use of construction equipment, gas or electricity fueled?
 - Transport of all materials/people...

> Hard to get significant input data for a whole plant!

- Clear need to work with suppliers to assess at best their LCA/Carbon impact!

EDF Hydro – O & M... & Monitoring!

To **lower economical + global impact** => objective: long lasting equipment... with **monitoring**!

Since ≈ 10 years ago, EDF Hydro decided to **monitor its most strategic plants** on:

- > Generators
- > Transformers (good! ©) mostly with DGA monitoring
- > Turbines
- > Penstocks
- > Mechanical shafts
- > Grid services (voltage/speed controls/regulations according grid codes)

On: Temperatures, Pressures, Vibrations, DGA, Operational times (valves...)...

Built 5 dedicated monitoring centers to assess most of the "live data".
=> Key points to monitoring are: "Which data, and who is using it practically?" ②

EDF Hydro – Monitoring... organisation

	Who	When	What	Alarm
Level 1 Plant	Plant operations technicians	24h/24h	Live operations' surveillance	Live alarms / protections onsite
Level 1 Monitoring	Monitoring center (≈ 2/3 people, mostly from plants)	Daytime	Live monitoring/check on alerts/alarms on all data/devices!	« Self » specified, below protection settings
Level 2	Support to monitoring center (≈ 2 engineers)	Weekly	Tendency checks on medium/long term.	Statistical tools
Level 3	Experts (from many business units)	On demand	Investigations / specific tests / assessments and recommendations, as needed	-
Team work ☺				

G.

EDF Hydro – Monitoring alarms

Short-term alarms

Medium/long-term alarms

TRANSFORMERS MAGAZINE'S

EDF Hydro – Monitoring long-term tendency

Example: U/Q of group delivery

Example: Bearing temperature over 4 years

Comparison of operations to settings & TSO contract

Mechanical inspection + move of 0.05 mm of one pad => -15 °C!

EDF Hydro – Monitoring of 250 MVA GSU

18 / 400 kV GIS from 1981 5 limbs core design No specific issues 2019: **H2** => Increasing Partial Discharges (PD) over months!

Alarm by monitoring center + global investigations \

ANSFORMERS MAGAZINE'S

EDF Hydro – Monitoring of 250 MVA GSU

With > 3 000 ppm of H2 => oil treatment in October 2019 to NOT saturate H2 DGA sensor... and still be able to know the tendency!

> Then H2 increased again... as we didn't fix the problem, just the way to measure it ③

No Pier PO PO PA [Histo] Vue 2 🙁 **ITRI Vue 1** white the for H2 monitoring H2 lab déc. 2019 ven. 15

=> THE tricky monitoring question... where to stop?

EDF Hydro – Monitoring of 250 MVA GSU

Then, added « bushing » monitoring, for PD measurements in service: > Floating potential on PD => and on inspection! => victory of monitoring + teamwork © !

EDF Hydro – Conclusion

On the sustainability of whole hydro plants:

> Going from carbon footprint assessment to life cycle assessment... still in progress!

- > Materials/Steels: clear difference on recycled % and type of furnace.
- > Need to work with suppliers for significant assessment and improvement.

On digitalization... to keep sustainable plants:

> Monitoring is going on... more and more in the field $\textcircled{\sc op}$

> WHO analyze the data is key point! Organization is needed!

> Digitalization + teamwork... works! In field cases \bigcirc

Thank You For Your **Kind Attention** \odot

