

SUSTAINABILITY AND DIGITALIZATION

Transforming Transformer Test

Testing solutions today for the energy grid of tomorrow

Frédéric DOLLINGER

June 7, 2023

K.I.S.S. Presentation Keep it Simple & Straightforward

Keep this in Mind

Source: National Training Laboratories, Bethel, Maine

Why is testing solutions for the energy grid of tomorrow crucial?

Sustainability: Reduce CO₂ Emissions

Green Power Generation

Green Power Generation

Transformers are in more missioncritical applications and in more inaccessible places

For 1 GW power generation:

more transformers to producetypically more tests to perform

Transformer losses

The annual worldwide Distribution Transformers market in 2022 is worth \$18B

Number of transformers and overall power can be estimated based on the above number, assigning an average price for a distribution transformer as 20.000 USD, and average power as 500 kV

Transformers manufactured / yearTotal power manufactured / year905.000 TRF / year347.500 MVA / year

Assuming an efficiency of 98%, the yearly losses for manufactured transformers is 60.8 TWh, which is 26% of Switzerland's yearly energy consumption

Energy Saving, e.g., EcoDesign Directive EU

****	25.10.2019	EN Official Jou	rnal of the European Union	L 272/107	
**** European Commission	amen]	COMMISSION REGULATION (EU) 2019/1783 of 1 October 2019 amending Regulation (EU) No 548/2014 on implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to small, medium and large power transformers (Text with EEA relevance)			
Minimum Peak Efficiency Index	x requirements for dry-type larg Um ≤ 36kV	ge power transformers with			
			01 07 2	021	
Rated Power (MVA)	Tier 1 (1.7.2015) Minimum	Tier 2 (1.7.2021)		021	
Rated Power (MVA) 3,15 < Sr ≤ 4	Tier 1 (1.7.2015) Minimum 1 99,348	Tier 2 (1.7.2021) Peak Efficiency Index (%) 99,382	01.07.2 	021 o Load Loss	
Rated Power (MVA) 3,15 < Sr ≤ 4 5	Tier 1 (1.7.2015) Minimum 1 99,348 99,354	Tier 2 (1.7.2021) Peak Efficiency Index (%) 99,382 99,387	01.07.2 10% N	021 o Load Loss	
Rated Power (MVA) 3,15 < Sr ≤ 4	Tier 1 (1.7.2015) Minimum 1 99,348 99,354 99,356	Tier 2 (1.7.2021) Peak Efficiency Index (%) 99,382 99,387 99,389	- 01.07.2 10% N - compa	021 o Load Loss red to 2015	
Rated Power (MVA) 3,15 < Sr ≤ 4	Tier 1 (1.7.2015) Minimum 1 99,348 99,354 99,356 99,357	Tier 2 (1.7.2021) Peak Efficiency Index (%) 99,382 99,387 99,389 99,389 99,390	01.07.2 	021 o Load Loss red to 2015	

EcoDesign Impact on 3 Ph Oil filled Distribution Transformers

\bigcirc Loss levels to be applied (reference of MV \leq 24 kV and LV \leq 1.1 kV

Rated power	Tier 1: From 1 st July 2015		Tier 2: From 1 st July 2021	
(kVA)	No Load Loss (W)	Load Loss (W)	No Load Loss (W)	Load Loss (W)
≤25	70 (Ao)	900 (Ck)	63 (Ao-10%)	600 (Ak)
50	90 (Ao)	1100 (Ck)	81 (Ao-10%)	750 (Ak)
100	145 (Ao)	1750 (Ck)	130 (Ao-10%)	1250 (Ak)
160	210 (Ao)	2350 (Ck)	189 (Ao-10%)	1750 (Ak)
250	300 (Ao)	3250 (Ck)	270 (Ao-10%)	2350 (Ak)
315	360 (Ao)	3900 (Ck)	324 (Ao-10%)	2800 (Ak)
400	430 (Ao)	4600 (Ck)	387 (Ao-10%)	3250 (Ak)
500	510 (Ao)	5500 (Ck)	459 (Ao-10%)	3900 (Ak)
630	600 (Ao)	6500 (Ck)	540 (Ao-10%)	4600 (Ak)
800	650 (Ao)	8400 (Ck)	585 (Ao-10%)	6000 (Ak)
1000	770 (Ao)	10500 (Ck)	693 (Ao-10%)	7600 (Ak)
1250	950 (Ao)	11000 (Bk)	855 (Ao-10%)	9500 (Ak)
1600	1200 (Ao)	14000 (Bk)	1080 (Ao-10%)	12000 (Ak)
2000	1450 (Ao)	18000 (Bk)	1305 (Ao-10%)	15000 (Ak)
2500	1750 (Ao)	22000 (Bk)	15 7 5 (Ao-10%)	18500 (AK)
3150	2200 (Ao)	27500 (Bk)	1980 (Ao-10%)	23000 (Ak)

Tolerances

Measured parameter	Before	With new regu	Ilation
Load losses	+15%	Zero Positive To	lerance
50	+15%	Zero Positive To	lerance

The challenge

You start every day like this

The only chance

Who is affected

Center of Gravity shifts for the transformer industry

DTTS Reference List

Year	Model	Country	End Customer
2012	DTTS 3-2500	Czech Republic	ZKU/KEMA
2012	DTTS 3-1600	Brazil	Cooper Power
2012	DTTS 3-2500	Colombia	Legrand
2013	DTTS 3-2500	South Africa	Revive Electrical
2013	DTTS 3-1600	Saudi Arabia	SEC South Abha
2013	DTTS 1-533	Panama	Train / Caivet
2013	DTTS 3-2500	Poland	Elhand
2013	DTTS 3-5000	Poland	ABB, Lodz
2013	DTTS 3-1600	Uruguay	Latu
2013	DTTS 3-2500	Thailand	QTC
2013	DTTS 3-2500	Belarus	METZ
2013	DTTS 3-2500	Belarus	METZ
2013	DTTS 3-2500	Belarus	METZ
2014	DTTS 3-5000	Azerbaijan	Sumgait Technologies Park
2014	DTTS 3-2500	Turkey	SEM Transformers
2014	DTTS 3-2500	Egypt	ABB, Ramadan City
2014	DTTS 3-2500	Algeria	ABB, Hydra
2014	DTTS 3-5000	Saudi Arabia	Schneider.
2014	DTTS 3-5000	Turkey	ABB, Dudullu
2015	DTTS 3-500	Colombia	EPM
2015	DTTS 3-2500	Turkey	Ulusoy Transformers
2015	DTTS 3-2500	South Boston	ABB
2015	DTTS 3-1600	Australia	ABB, Perth
2015	DTTS 3-1600	South Korea	KESCO
2016	DTTS 3-2500	Vietnam	MBT
2016	DTTS 3-2500	Vietnam	ETC 1
2016	DTTS 3-2500	Vietnam	ETC 3
2016	DTTS 3-5000	South Korea	Sanil
2016	DTTS 3-500	South Korea	KTL
2016	DTTS 3-2500	Germany	SGB
2016	DTTS 3-2500	Vietnam	Hai Phong
2017	DTTS 3-2500	Algeria	UTEC
2017	DTTS 3-2500	China	Siemens
2017	DTTS 3-2500	USA	Eaton - Cooper

Nearly half of DTTS customers are NEW BUYERS

METZ Belarus:

- 3 x DTTS 3-2500
- 9 x 2293

O Revive South Africa:

- 1 x DTTS 3-2500
- 1 x SGSA 400-20
- 1 x DTTS 3-5000
- 2024: SPTTS 500

Speed Accuracy **Quality Management** Modularity Scalability Safety Reliability Service

...

Typical Test System Setup

4

10 Benefits of EPS VS M.G. Set

7 Key Factors for Accurate Transformer Loss Meas.

7 Key Factors for Accurate Transformer Loss Meas.

5/7 Key Factors for Accurate Transformer Loss Meas. are linked with EPS technology!

Real-time feedback loop

Real-time feedback loop: Symmetry control

Real-time feedback loop: THD control

Real-time feedback loop: THD control

O Without THD Control

ad Loss Measurement 590 - C:\..\Data\2500kVA SUM/AVG Phase A Phase B Phase C 230.091 230.394 v 232.116 228.974 v 684.000 928.000 1.298 k 2.910 k 0.352 0.320 0.502 0.397 21.962 9 26.531 % 25.191 27.081 % 7.710 % 7.250 % 7.820 % 7.590 7.250 % 7.590 9 7.710 % 7.820 % 0.352 0.320 0.502 0.397 2.022 kva 2.472 kva 2.235 kva 6 729 ky 7.710 % 7.250 % 7.820 % 7.590

Example on a 2,500 kVA, 33 kV / 400 V transformer

With THD Control

Phase A Phase C SUM/AVG Phase B 230.344 230 266 V 230.501 229.952 2.826 k 813.000 y 603.000 w 1.410 k 0.307 0.531 0.293 0.38528.852 9 20.431 % 27.560 % 25.614 9 0.865 % 1.050 % 0.868 % 0.926 % 0.865 % 1.050 % 0.868 % 0.926 % 0.293 0.307 0.531 0.385 2.657 kv 1.870 kva 2.248 kv 6.776 kva 0.868 0.865 9 1.050 % 0.926

3% Improvement

Real-time feedback loop: THD control

Example on a 2,500 kVA, 33 kV / 400 V transformer

Voltage without Improved EPS controller:

Voltage with Improved EPS controller:

Speed

How to reach 10 min cycle time?

- **OD** Transformer database
- Auto. hardware configuration
- Auto. test sequence configuration
- O Auto. measurement
- 0 Auto. results calculation according to IEC / IEEE
- Dass / Fail criteria
- O Auto. test report

Reliability

STANDARD product range:

🛈 Up to 2500 kVA

OD Up to 5000 kVA

STANDARD for:

- **OD trusted** product (over 65 installed systems)
- D fast delivery / service
- O Continuous improvement

Above 5000 kVA: Modular EPS

Typical Test System Setup

Typical Test System Setup

111

Quality Management

Quality Management

OD Accurate process

- Process defined from the system
- Each transformer is tested in the same way
- Each operator will test in the same way

Traceability

- Fully calibrated system
- Test report database

Safety: Advanced CaMS GUI & SIL 3

PLC Safety Function

QUESTION:

Why is testing solutions for the energy grid of tomorrow crucial?

ANSWER:

"In every chain of reasoning, the evidence of the last conclusion can be no greater than that of the weakest link of the chain, whatever may be the strength of the rest."

Thomas Reid's Essays on the Intellectual Powers of Man, 1786

