

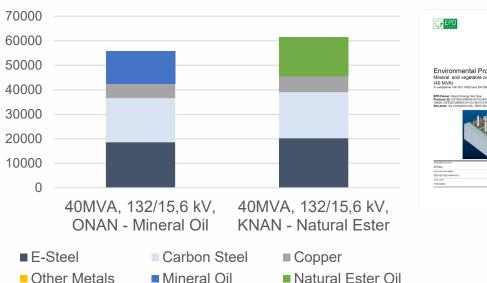
SUSTAINABILITY AND DIGITALIZATION

## Esters & Semi Hybrid Insulations Transformers: Enablers of a low-carbon energy system?

Dr. Bhaba Das & Dr. Ghazi Kablouti Hitachi Energy - Transformers June 2023



**OHITACHI Energy** 




- 1. The challenge
- 2. The objectives
- 3. Overview: insulation types and transformer design outcomes
- 4. Results: impact of insulation type on material use and life-cycle GHG emissions
- 5. Key Takeaways



# The challenge (1/2): material efficiency matters

| Total weight:              | +10% |
|----------------------------|------|
| Steel (E- & Carbon Steel): | +12% |
| Copper                     | +11% |
| Insulation Fluid:          | +19% |
| CF Cradle-to-Gate:         | +8%  |



| Mineral and vegetal<br>(40 MVA)<br>In compliance with ISO 14225 and<br>EPD Owner: Hitachi Energy Italy | Sca                                                                                                                     |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Products ID: GST002-40MVA-HV<br>ONAN: GST002-40MVA-HV132-M<br>Site plant: Via Campestrin 6(A. 3)       | 132-MV15.6 ONAN: GST002-40MVA-HV150-MV20.8<br>IV15.6 KNAN: GST002-40MVA-HV150-MV20.8 KNAN<br>8043 Monselice (PD). Italy |
|                                                                                                        |                                                                                                                         |
| PRODUM OPENIOR<br>EPOINTy                                                                              | FUELDER<br>FFCRey                                                                                                       |
| EPUNKY<br>INCLASSION MARKE                                                                             | EPUNAY<br>INCONSIGNATION                                                                                                |
| EPO-05TRO-404UA-01                                                                                     | EPC/EALVED 18                                                                                                           |
| EPO-001002-00404-01                                                                                    | CPOINCEON .                                                                                                             |
|                                                                                                        |                                                                                                                         |
|                                                                                                        |                                                                                                                         |

HITACHI

#### Rationale for higher material use when designing for Natural Ester:

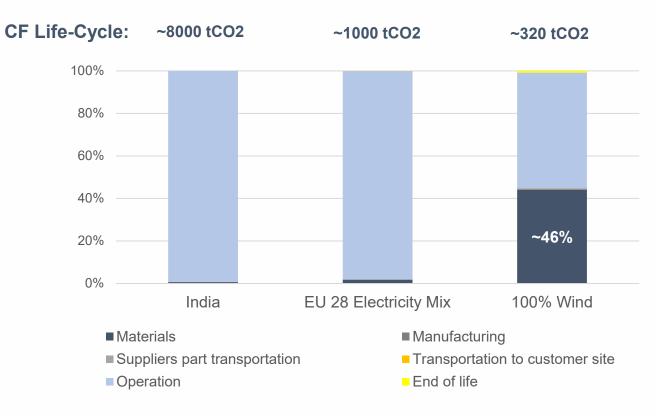
- 1. Higher viscosity of NE vs. MO: leading to heavier active parts
- 2. Achieving same temperature rise limits (as for MO):
  - Cooling ducts in Windings to be modified
  - Copper cross-section to be modified
  - More external cooling required

#### Challenges of increasing material use in Transformers:

- +35% Global demand for Steel by 2050 (vs. 2020, IEA)\*\*
- +51% Global demand for Copper for clean energy technologies by 2050 (vs. 2020)\*
  - Geographical concentration of raw material production
  - Mining lead times & costs
  - Environmental and social concerns
  - Exposure to climate risks

Hitachi Energy

\* SDS IEA Sustainable Development Scenario


Kg

Source: Metals for Clean Energy: Pathways for solving Europe's raw material challenges. Report by KU Leuven, commissioned by Eurometaux Europe's metals association \*\* The Role of Critical Minerals in Clean Energy Transition, IEA





## The challenge (2/2): material efficiency matters



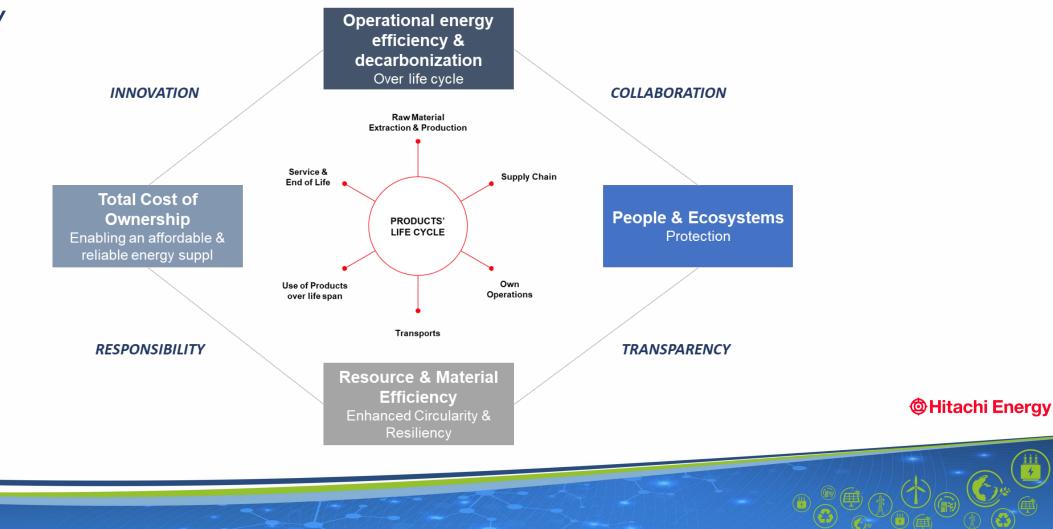
Balancing material and energy efficiency becoming more relevant as grids continue to decarbonize:

- Decarbonizing electricity grids (with a higher share of renewable and low-carbon power generation): *first* lever for lowering GHG emissions from T&D equipment
- 2. In low carbon electricity grids: material efficiency matters for lowering total life-cycle GHG emissions of transformers

Hitachi Energy

40MVA, 132/15,6 kV, ONAN - Mineral Oil




- 1. The challenge
- 2. The objectives
- 3. Overview: insulation types and transformer design outcomes
- 4. Results: impact of insulation type on material use and life-cycle GHG emissions
- 5. Key Takeaways





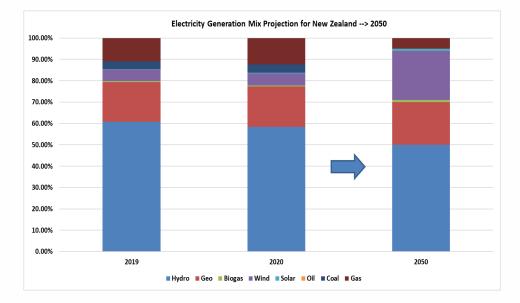
# **Objectives (1/2)** Optimizing material use & life-cycle carbon footprint for transformers with Natural Ester

The Hitachi Energy Framework for assessing and advancing sustainability in Transformers

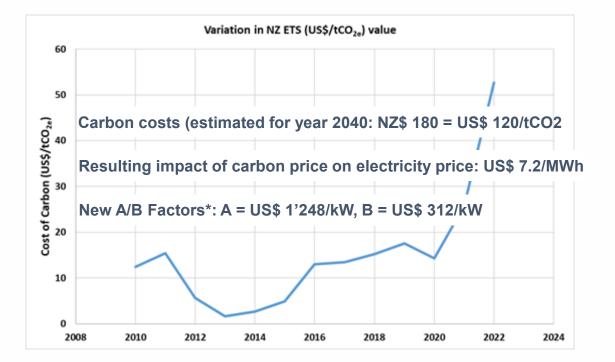




# **Objectives (2/2)**


- 1. Natural Ester benefits: higher fire safety & biodegradability in case of leakages (protecting people & ecosystems)
- 2. Quantifying the impact of advanced, hightemperature insulations on enhancing material efficiency & carbon footprint for transformers with natural ester (particularly when operating in low carbon electricity grids)

| Design   | Insulation<br>system | Dielectric<br>Fluid | Temperature rise limits | Design imperative                                                                                                        |
|----------|----------------------|---------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Design 1 | Conventional         | Mineral Oil         | Standard                | Lowest initial transformer price                                                                                         |
| Design 2 | Conventional         | Natural Ester       | Standard                | Lowest initial transformer price                                                                                         |
| Design 3 | Semi-hybrid          | Natural Ester       | High                    | Lowest initial transformer price                                                                                         |
| Design 4 | Semi-Hybrid          | Natural Ester       | High                    | Lowest initial transformer price,<br>but with loss capitalization factors<br>considering the impact of carbon<br>pricing |




#### Why design 4? Optimizing for adapted loss capitalization factors

#### (considering the impact of carbon costs at mid-life)



| Year | % Share of renewables | Grid Emission Factor         |
|------|-----------------------|------------------------------|
| 2020 | ~83% (Actual)         | 0.101 tCO <sub>2e</sub> /MWh |
| 2040 | ~90% (Estimated)      | 0.059 tCO <sub>2e</sub> /MWh |
| 2050 | ~95% (Target)         | 0.024 tCO <sub>2e</sub> /MWh |



\* Assumptions: Discount Rate: 4%; Lifetime: 40 Years, Load factor: 50%



- 1. The challenge
- 2. The objectives
- 3. Overview: insulation types and transformer design outcomes
- 4. Results: impact of insulation type on material use and life-cycle GHG emissions
- 5. Key Takeaways



# Semi-hybrid vs. conventional insulations: overview

|                         | Semi-hybrid insu | Semi-hybrid insulation system Convent |                            |  |
|-------------------------|------------------|---------------------------------------|----------------------------|--|
| Insulation Fluid        | Mineral Oil      | Ester Fluid                           | Mineral Oil or Ester Fluid |  |
| Insulation of Conductor | TU Paper         | TU Paper                              | Kraft Paper                |  |
| Top Oil Rise            | 60 K             | 90 K                                  | 60 K                       |  |
| Average Winding Rise    | 75 K             | 95 K                                  | 65 K                       |  |
| Hot Spot Rise           | 90 K             | 110 K                                 | 78 K                       |  |

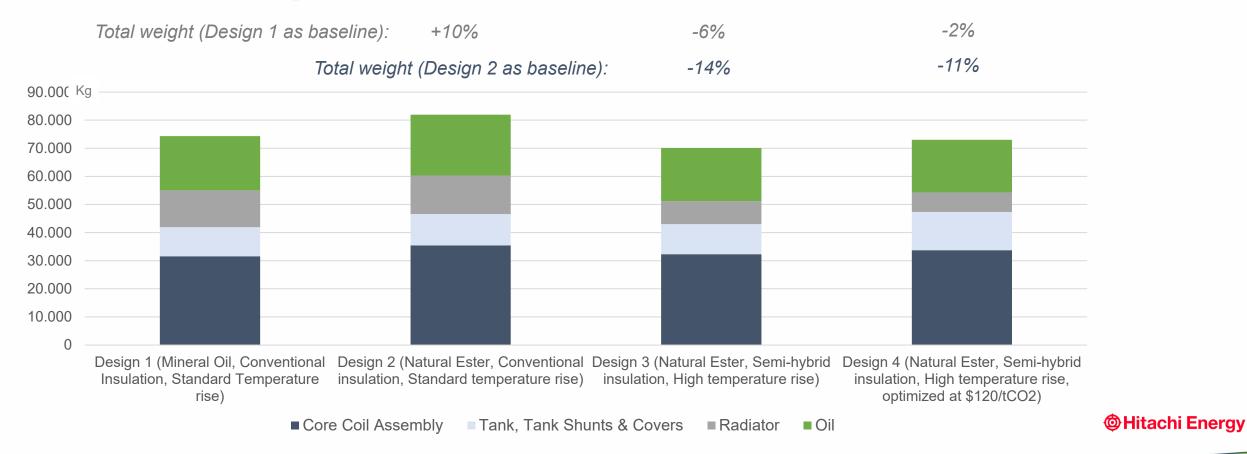
Semi Hybrid Temperature Rise Limits (Source: IEC 60076-14)





## **Transformer Design Outcomes**

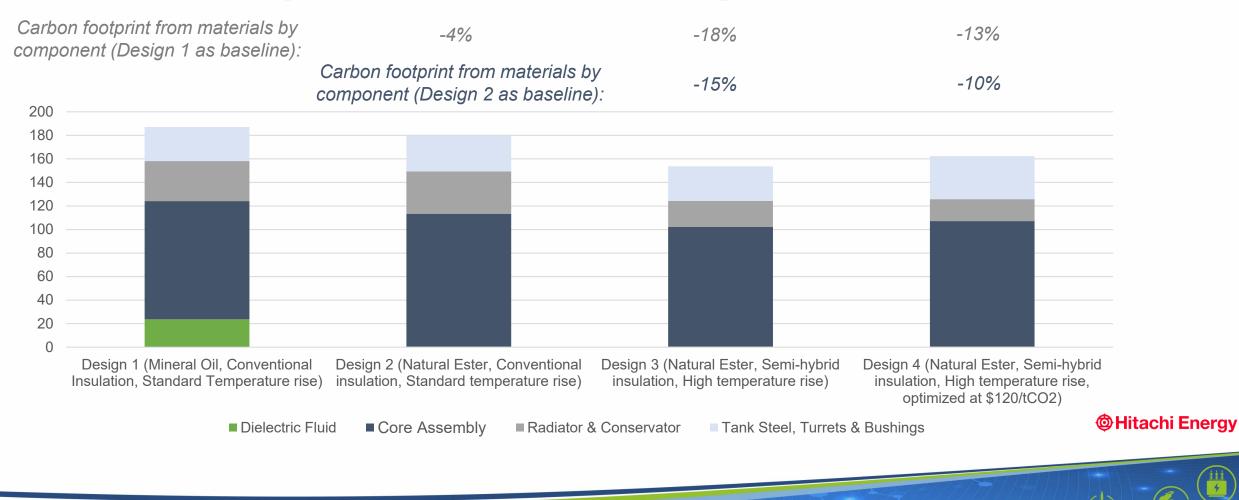
#### 40/60 MVA, 132/33kV, ONAN/ONAF, 14%, 50Hz


| Parameters        | Design 1<br>@75ºC           | Design 2<br>@75ºC           | Design 3<br>@115ºC         | Design 4<br>@115ºC                                                 |
|-------------------|-----------------------------|-----------------------------|----------------------------|--------------------------------------------------------------------|
| Туре              | Conventional<br>Mineral Oil | Conventional<br>Ester Fluid | Semi Hybrid<br>Ester Fluid | Semi Hybrid<br>Ester Fluid<br>optimized at \$120/tCO <sub>2e</sub> |
| No Load Loss (kW) | 22.9                        | 25.8                        | 23.8                       | 17.8                                                               |
| Load Loss (kW)    | 344.9                       | 302.0                       | 388.9                      | 345.5                                                              |
| Total Loss        | 367.8                       | 327.8                       | 412.7                      | 363.35                                                             |
| K <sub>PEI</sub>  | 0.258                       | 0.292                       | 0.247                      | 0.227                                                              |
| PEI Design output | 99.704%                     | 99.706%                     | 99.679%                    | 99.738%                                                            |



- 1. The challenge
- 2. The objectives
- 3. Overview: insulation types and transformer design outcomes
- 4. Results: impact of insulation type on material use and life-cycle GHG emissions
- 5. Key Takeaways

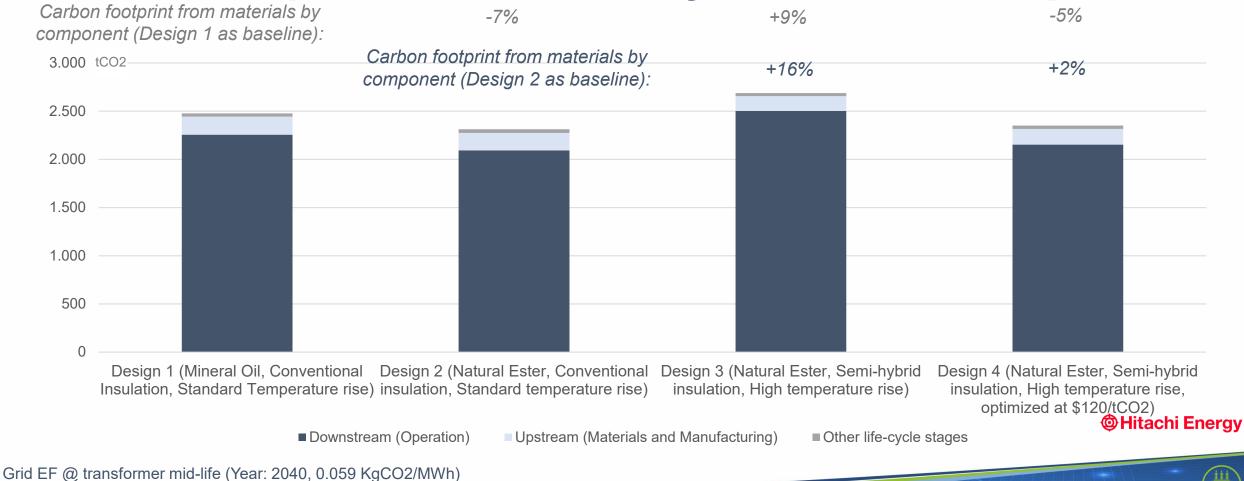



### **Results: impact on material use**



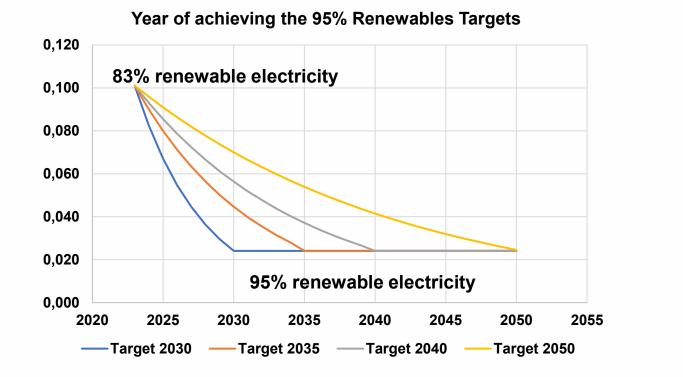




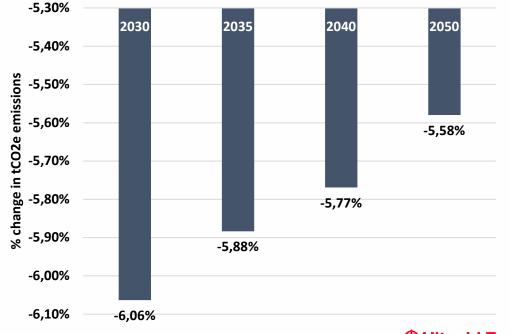

### **Results: impact on carbon footprint from materials**








### **Results: impact on total life-cycle carbon footprint**

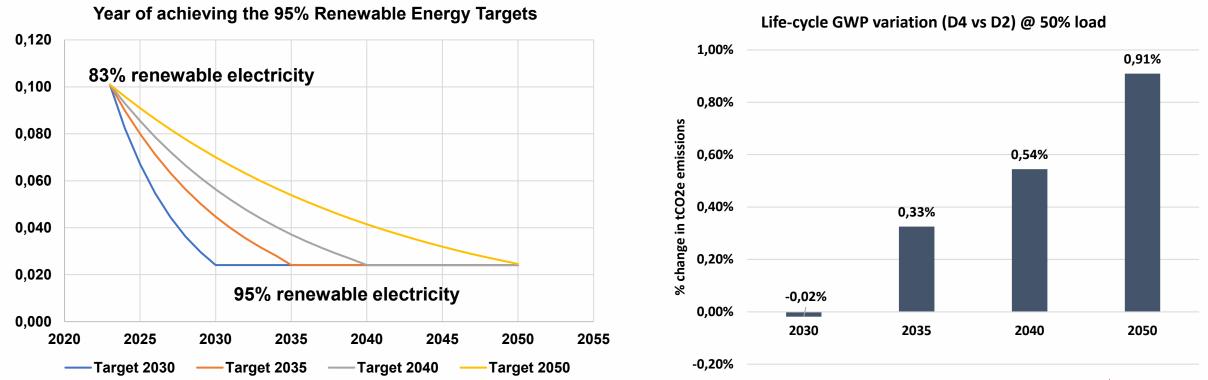





# **Results: Variation in GEF (Design 4 vs 1)**








**OHitachi Energy** 





## **Results: Variation in GEF (Design 4 vs 2)**



**OHITACHI Energy** 



# **Results: summary**

Design 4: Most optimized design (compared to Design 2): by combining higher material efficiency and lower total life-cycle carbon footprint under more realistic operational condition (*Grid EF, Cost of Electricity at mid-life*)

| Parameters                                                                                                                     | Design 1<br>@75⁰C           | Design 2<br>@75ºC           | Design 3<br>@115ºC         | Design 4<br>@115ºC                                                 |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|----------------------------|--------------------------------------------------------------------|
| Туре                                                                                                                           | Conventional<br>Mineral Oil | Conventional<br>Ester Fluid | Semi Hybrid<br>Ester Fluid | Semi Hybrid<br>Ester Fluid<br>optimized at \$120/tCO <sub>2e</sub> |
| K <sub>PEI</sub>                                                                                                               | 0.258                       | 0.292                       | 0.247                      | 0.227                                                              |
| PEI Design output                                                                                                              | 99.704%                     | 99.706%                     | 99.679%                    | 99.738%                                                            |
| Material efficiency (total weight in Kg)                                                                                       | 75'540                      | 83'140                      | 71'315                     | 74'090                                                             |
| Carbon footprint from materials (tCO <sub>2</sub> )                                                                            | 187                         | 180                         | 154                        | 162                                                                |
| Total life-cycle carbon<br>footprint (tCO2)<br>(@50%load, Grid EF at mid-<br>life: 0.059 Kg CO <sub>2</sub> /MWh,<br>40 years) | 2'478                       | 2'313                       | 2'689                      | 2'351                                                              |





# Key Takeaways

## Transition to a more sustainable, low-carbon energy system = transition from fossil-fuel to a material-intensive energy system

• Use of esters & high-temperature insulation can be an effective tool in **reducing the carbon footprint** while simultaneously improving material efficiency. This is particularly relevant for countries with high renewable penetration, such as New Zealand.

5

CO<sub>2</sub>

• Ester fluids (Biodegradable and higher flash point fluids): fire safety benefits and environmental risk mitigation solution (biodegradability) in case of leakages.



• Reflect on the choice of temperature rise limits specified with conventional insulation in mineral oil and ester fluids. **Maximize the economic, environmental, and safety** benefits of transformers considering the application type, (future) energy-mix and surrounding ecosystems!



 Adoption of TCO optimized solutions, including carbon costs, for losses or from material usage in transformer specification, with quantified sustainability metrics, such as life cycle analysis data.

# Thank you very much for your participation and attention!!!

Dr. Ghazi Kablouti Global Portfolio Sustainability Leader Transformers <u>ghazi.kablouti@hitachienergy.com</u>

Dr. Bhaba Das Lead Digital Business Developer & Sustainability Application Engineer, Asia, Pacific, Middle-East & Africa <u>bhaba.das@hitachienergy.com</u> Advancing a sustainable energy future for all

**Hitachi Energy** 

HITACHI Inspire the Next