

SUSTAINABILITY AND DIGITALIZATION

Condition Monitoring of Power Transformer Insulation: HV Bushings, Partial Discharges and Transient Overvoltages

Vedran Jerbić, Principal Engineer Končar – Electrical Engineering Institute

June 2023

Purpose of Condition monitoring

- To detect emerging faults
- To enable condition-based maintenance
- To provide optimum transformer management
- To improve personnel and environment safety
- To enhance fault cause analysis

Insulation Monitoring Methods

- Bushing Monitoring
 - Capacitance C1
 - Dissipation Factor
- Transients Overvoltage Monitoring
 - Estimation of insulation stress
 - Grid modelling
- Partial Discharges Measurements and Monitoring
 - Apparent Charge
 - PRPD map used for pinpointing the cause
 - Localization of PD source

Bushing Monitoring methods

• 3phase bank methods

- Sum of currents
- Adjacent Phase to Phase
- Advantages:
 - Simple method
 - Less cabling
 - High sensitivity
- Disadvantages:
 - Network unbalance problems

• VT reference method

- Advantages:
 - Absolute measurement
 - No network unbalance problems
 - Faster response
- Disadvantages:
 - More cabling
- Dual transformer method
 - Advantages:
 - Monitors 6 bushings
 - No network unbalance problems
 - Faster response
 - Disadvantages:
 - More cabling

Case – power plant for peak loading

• Power plant information

- Hydro power plant commonly used during peak loading
- 3 generators
- 3 step-up transformers (3-phase 25MVA)
- Transformers connected to same 110 kV busbar
- Challenges
 - 3Phase bank method cannot be used since transformers are rarely on the grid more than a few days and averaging cannot be used to overcome grid imbalance
 - Reference methods must used
 - Data sharing and synchronization of distributed measurements
- Monitoring topology
 - 3 distributed TMS cubicles
 - Connected to the same LAN
 - Each TMS shares measurements with others
 - Each is synchronized to the same time
 - No added complexity and additional expenses
 - Additional feature monitoring of fast transients

Compensation method

- High sensitivity measurements
 - Each device measures bushing leakage currents amplitude and phase angle
 - Phase angle accuracy must be better than 0.01°
 - Leakage current amplitude and phase angle depends on:
 - Bushing C1 capacitance and dissipation factor
 - Grid voltage and phase angles
- HOW IS IT DONE?
 - Grid errors compensated using simple subtractions

$$\frac{\Delta C_{measured}}{C_0} = \frac{\Delta C_{real}}{C_0} + CAP_ERR_{GRID}$$
$$\Delta tg \delta_{measured} = \Delta tg \delta_{real} + TG_ERROR_{GRID}$$

$$\frac{\Delta C}{C_0} = \frac{\Delta C_{DUT}}{C_0} - \frac{\Delta C_{REF}}{C_0}$$
$$\Delta tg\delta = \Delta tg\delta_{DUT} - \Delta tg\delta_{ref}$$

Example - Installation

OIP Bushings

- Same Type and Manufacturer on all transformers
- Periodically checked using offline methods
- Monitoring installed in 2020

	AT1	AT2	AT3
Phase U	2017	2004	2004
Phase V	1999	2004	2004
Phase W	1999	2004	2004

Example – Lightning strikes recorded

- Transient Recorder Performance
 - 4 16 channels @ 5 MSps
 - Rise times > 350 ns
 - Long acquisition time, up to 7 seconds
 - Synchronized time
- Transient recorder benefits
 - Overvoltage protection monitoring
 - Overvoltage mapping
 - Insulation stresses assessment
 - Comparison with standard testing impulses
 - Non-standard impulses

Example - Monitoring Results

Postmortem analysis – dissipation factor

 10^{1}

- Dissipation factor temperature dependency
 - Saddle-like curve
 - Curve shape depends on moisture
- Testing faulty bushing in climatic chamber

Temperature [°C]

- Comparison with manufacturer's data
- Testing in the range from 0 80 °C
- Conclusion

3.5

3

2.5

1.5

0.5

tg δ / tg δ_{20}

Monitoring measurement confirmed

Postmortem analysis - PD

- Insulation deterioration can be assed by measuring PD
- Testing faulty bushing in a high voltage lab
- Partial discharges appearance

THANK YOU FOR YOUR ATTENTION

www.koncar-institut.com

